Bell Ringer

Identify and state the pattern, factor, and then solve the equation.

$$12x^2 + 84x + 147 = 0$$

Bell Ringer

Identify and state the pattern, factor, and then solve the equation.

$$12x^{2} + 84x + 147 = 0$$
Perfect Square Trinomial Addition
$$3(4x^{2} + 28x + 49) = 0$$

$$3(2x+7)^{2} = 0$$

$$X = -\frac{7}{3}$$

Factoring with the Distributive Property

To factor using the distributive property, consider

- Factoring out the GCF.
- 2) Standard method of factoring when a = 1 and box method when a > 1.
- Factoring looking for patterns like difference of two squares and perfect square trinomials.

MUST FACTOR COMPLETELY

1. 5n³ - 20n

Factor out the GCF.

1.
$$5n^3 - 20n$$

GCF = $5n$ so factor but $5n$

$$5n(n^{2}-4)$$
 $5n(n+a)(n-a)$

2. $3x^4 + 6x^2$

2.
$$3x^4 + 6x^2$$

$$GCF = 3x^2$$

$$3x^2(x^2+2)$$

3. $6y^4 + 14y^3 - 10y^2$

3.
$$6y^4 + 14y^3 - 10y^2$$

$$GCF = 2y^{2}$$

$$2y^{2} (3y^{2} + 7y - 5)$$

4.
$$4x^{2} - 36 = 0$$

GCF = 4

 $4(x^{2} - 9) = 0$ Difference of Two Squares

 $4(x+3)(x-3) = 0$

$$X=-3$$
 and 3

5.
$$24x^3 + 18x^2 = 0$$

5.
$$24x^3 + 18x^2 = 0$$

$$6x^{2}(4x+3)=0$$

$$X = -\frac{3}{4}$$
 and 0

$$6.8x^2 + 32 = 0$$

$$6. 8x^2 + 32 = 0$$

$$8(x^2+4)=0$$

not a difference of two squares therefore, no solutions

$$x^{3}+4=0$$
 $x^{3}=-4$
not possible

7.
$$-7m^3 + 28m^2 - 21m = 0$$

7.
$$-7m^3 + 28m^2 - 21m = 0$$

$$-7m(m-1)(m-3)=0$$

$$m=1,3, and O$$

method